Measurement of magic-wavelength optical dipole trap by using the laser-induced fluorescence spectra of trapped single cesium atoms.
نویسندگان
چکیده
Based on the multi-level model, we have calculated light shifts for Zeeman states of hyperfine levels of cesium (Cs) 6S1/2 ground state and 6P3/2 excited state. The magic-wavelength linearly-polarized optical dipole trap (ODT) for Cs 6S1/2 |F = 4, mF = + 4ñ - 6P3/2 |F' = 5, mF = + 5ñ transition is experimentally constructed and characterized by using the laser-induced fluorescence spectra of trapped single Cs atoms. The magic wavelength is 937.7 nm which produces almost the same light shift for 6S1/2 |F = 4, mF = + 4ñ ground state and 6P3/2 |F' = 5, mF = + 5ñ excited state with linearly-polarized ODT laser beam. Compared to undisturbed Cs 6S1/2 |F = 4, mF = + 4ñ - 6P3/2 |F' = 5, mF = + 5ñ transition frequency in free space, the differential light shift is less than 0.7 MHz in a linearly-polarized 937.7 nm ODT, which is less than 1.2% of the trap depth. We also discussed influence of the trap depth and the bias magnetic field on the measurement results.
منابع مشابه
Optical control of single neutral atoms
This thesis presents experiments concerning the preparation and manipulation of single neutral atoms in optical traps. The experimental setup as well as the properties of the optical dipole trap are described. The long term goal of this experiment is to use trapped atoms as information carriers in quantum information processing. The examination and control of all trapping parameters and heating...
متن کاملAn optical conveyor belt for single neutral atoms
Using optical dipole forces we have realized controlled transport of a single or any desired small number of neutral atoms over a distance of a centimeter with sub-micrometer precision. A standing wave dipole trap is loaded with a prescribed number of cesium atoms from a magneto-optical trap. Mutual detuning of the counterpropagating laser beams moves the interference pattern, allowing us to ac...
متن کاملState-insensitive cooling and trapping of single atoms in an optical cavity.
Single cesium atoms are cooled and trapped inside a small optical cavity by way of a novel far-off-resonance dipole-force trap, with observed lifetimes of 2-3 s. Trapped atoms are observed continuously via transmission of a strongly coupled probe beam, with individual events lasting approximately 1 s. The loss of successive atoms from the trap N>/=3-->2-->1-->0 is thereby monitored in real time...
متن کاملSympathetic Cooling of Lithium by Laser-cooled Cesium
We present first indications of sympathetic cooling between two neutral trapped atomic species. Lithium and cesium atoms are simultaneously stored in an optical dipole trap formed by the focus of a CO2 laser, and allowed to interact for a given period of time. The temperature of the lithium gas is found to decrease when in thermal contact with cold cesium. The timescale of thermalization yields...
متن کاملMixture of ultracold lithium and cesium atoms in an optical dipole trap
We present the first simultaneous trapping of two different ultracold atomic species in a conservative trap. Lithium and cesium atoms are stored in an optical dipole trap formed by the focus of a CO2 laser. Techniques for loading both species of atoms are discussed and observations of elastic and inelastic collisions between the two species are presented. A model for sympathetic cooling of two ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optics express
دوره 25 14 شماره
صفحات -
تاریخ انتشار 2017